Che	below.
	structure A structure B
(a) (i)	Describe, with the aid of suitable diagrams showing orbital overlap, the difference in bonding between structure A and structure B .
	In your answer, you should use appropriate technical terms, spelled correctly.
	[4]

(ii) The table below shows the enthalpy changes for the reactions of cyclohexene, C_6H_{10} , and benzene, C_6H_6 , with hydrogen.

reaction	enthalpy change/kJ mol ⁻¹
$C_6H_{10} + H_2 \rightarrow C_6H_{12}$	–119
$C_6H_6 + 3H_2 \rightarrow C_6H_{12}$	-208

Using this information, suggest and explain whether structure ${\bf A}$ or structure ${\bf B}$ is a better representation of benzene.

(b) Benzene compounds can undergo nucleophilic substitution reactions.

Add curly arrows to the diagram below to show the two-step mechanism of $C_6H_5N_2^+$ with F^- .

$$+ N = N$$

(c) Benzene can react with halogenoalkanes in the same way as with bromine, as shown in reaction 1 below.

Write an equation to show the formation of the electrophile that reacts with benzene in reaction 1.

- (d) The types of reaction in (b) and (c) can be used to synthesise compound D, as shown in the flowchart below.
 - (i) Complete the boxes below to suggest formulae for the reactants involved in the synthesis of compound D.
 Give structures for organic compounds.

(ii) In a synthesis of compound **D** from 1,3-diaminobenzene shown in the flowchart, 1.73 g of compound **D** was prepared. These structures have been repeated below:

The overall percentage yield of compound **D** was 40.0%.

 M_r of compound **D** = 346.0

Calculate the mass of 1,3-diaminobenzene needed for this synthesis.

(iii)	Compound D has been developed for possible use as a drug to treat heart conditions. When compound D , prepared in this synthesis, was given to patients, only 25% of the dose was effective in treating their heart conditions.
	Explain why only 25% of the dose was effective. Suggest how the synthesis of compound ${\bf D}$ might be changed to make the dose more effective.
	[3]
	[Total: 18]

2 4-Aminophenol is an organic compound that can behave as an acid and a base.

4-aminophenol

	_				
(a)	State how	4-aminopheno	l can	hahava as	a haca
141	Otate HOW	- -anninoonicho	ı can	Deliave as	a base.

[1]

(b) 4-Aminophenol is produced by the reduction of 4-nitrophenol.

Write an equation to show the production of 4-aminophenol from 4-nitrophenol. Use **[H]** to represent the reducing agent.

[1]

- (c) 4-Nitrophenol can be produced from 4-bromophenol.
 - Complete the mechanism for this reaction.
 - Use ⁺NO₂ as the electrophile. Include any intermediate and the products.
 - In the mechanism for this reaction, NO₂ substitutes for Br on the ring.

(d) The flowchart below shows some reactions of 4-aminophenol.

(i) Identity the reagent in reaction I.

[1]

(ii) Name the organic product of reaction II.

[1]]

(iii) Write the equation for reaction II.

(iv) In the box on the flowchart, draw the structure of the organic compound formed by reaction III. [1]

[1]

(e) The Sandmeyer reaction can be used to replace a diazonium group, N_2^+ , with a halogen atom, X, on an aromatic ring.

The reagent used for the reaction is a copper(I) halide, CuX.

Compound **C**, shown below, can be synthesised using **only** 4-aminophenol and other standard laboratory reagents. The flowchart on the next page shows this synthesis.

compound C

(i) State a possible use for compound C.

.....[1]

- (ii) On the flowchart on the next page:
 - state the reagents and conditions used for reaction 1
 - suggest the structure of compound B
 - suggest the reagent used for reaction 2
 - state the conditions used for reaction 3.

[5]

behave as bases. Explain why amines can behave The student reacted an excess of the salts the with: sulfuric acid, ethanoic acid. student reacted phenylamine with temperature below 10 °C. A diazonium ion with compound B . After	as ethylamine, $C_2H_5NH_2$, and phenylamine as bases. of $C_2H_5NH_2$ with two different acids. at would be formed when an excess of C_2H_2 . th a mixture of $NaNO_2(aq)$ and $HC1(aq)$ when the student then reconstruction, compound A was formed.	[1 ₅ NH ₂ react				
The student reacted an excess of Write the formulae of the salts the with: sulfuric acid, ethanoic acid. student reacted phenylamine wite temperature below 10 °C. A diazonium ion with compound B . Afte	of $C_2H_5NH_2$ with two different acids. at would be formed when an excess of C_2H th a mixture of $NaNO_2(aq)$ and $HCI(aq)$ where the student then resonant	[1				
The student reacted an excess of Write the formulae of the salts the with: sulfuric acid, ethanoic acid. student reacted phenylamine wite temperature below 10 °C. A diazonium ion with compound B . Afte	of $C_2H_5NH_2$ with two different acids. at would be formed when an excess of C_2H th a mixture of $NaNO_2(aq)$ and $HCI(aq)$ when the student then represent the results of the student of of the st	[1				
The student reacted an excess of Write the formulae of the salts the with: sulfuric acid,	of C ₂ H ₅ NH ₂ with two different acids. at would be formed when an excess of C ₂ H th a mixture of NaNO ₂ (aq) and HC <i>l</i> (aq) when the student then resonant in the reso	SNH ₂ reacts				
Write the formulae of the salts the with: sulfuric acid, ethanoic acid. student reacted phenylamine with temperature below 10 °C. A diazonium ion with compound B . Afte	at would be formed when an excess of C ₂ H th a mixture of NaNO ₂ (aq) and HC <i>l</i> (aq) when the student then represent the results of the student than results at least one of the student than results	[2				
with: sulfuric acid, ethanoic acid. student reacted phenylamine witemperature below 10 °C. A diazonium ion with compound B . Afte	th a mixture of NaNO ₂ (aq) and HC <i>l</i> (aq) when the student then restricted in the student of the	[2				
ethanoic acidstudent reacted phenylamine witemperature below 10°C. A diazonium ion with compound B . Afte	th a mixture of NaNO ₂ (aq) and HC <i>i</i> (aq) where the student then restricted in the student that restricted in the student that the student tha	[2				
student reacted phenylamine with temperature below 10 °C. A diazonium ion with compound B . After N	th a mixture of NaNO ₂ (aq) and HC <i>l</i> (aq) who conium ion was formed. The student then r neutralisation, compound A was formed.					
onium ion with compound B . Afte	neutralisation, compound A was formed.	nilst keeping reacted the				
N.						
	00011					
compound A						
(i) Draw the structures of the diazonium ion and compound B.						
Display the functional group in the diazonium ion.						
diazonium ion	compound B	[2]				
-		nd B and				
ditions						
	diazonium ion te the conditions required for the te a possible use for compound A	Display the functional group in the diazonium ion.				

(iii)	The student added Na ₂ CO ₃ to a solution of compound A .
	Draw the structure of the organic product and state the formulae of any other products from this reaction.
	[2]
(c) The	e student repeated the experiment in part (b) but allowed the temperature to rise above C.
Und gas	der these conditions, the diazonium ion in (b)(i) reacts with water to produce phenol. A with molar mass of 28.0 g mol ⁻¹ and one other product are also formed.
Cor	nstruct an equation for this reaction.
	[1]
	[Total: 9]

- 4 Hydroxyamines are organic compounds containing hydroxyl and amino functional groups.
 - (a) Salbutamol is a hydoxyamine used in the treatment of asthma and bronchitis. Salbutamol is an example of a chiral drug.
 - (i) Draw a circle around the chiral carbon in the structure of salbutamol shown below.

salbutamol

[1]

(ii) Suggest possible problems of making a chiral drug such as salbutamol and describe two ways that the pharmaceutical industry might overcome these problems.

(b) Monoethanolamine, MEA, H₂NCH₂CH₂OH, is a hydroxyamine that is used in aqueous solution as a gas scrubber to remove acidic gases from emissions in incinerators.

MEA is prepared industrially by reacting ammonia with epoxyethane.

$$H_2C - CH_2$$

epoxyethane

(i) Write an equation for the industrial preparation of MEA.

[1]

(ii) During the manufacture of MEA, a compound with molecular formula C₄H₁₁NO₂ is also formed.

Draw the structure of the compound with molecular formula $C_4H_{11}NO_2$.

[1]

(c) The combustion of some polymers produces emissions containing toxic acidic gases such as HCl and H_2S . MEA can remove HCl and H_2S from the emissions.

Give the formula of the organic salts formed when MEA removes:

(i) HCl,

[1]

(ii) H₂S.

(d)	ME	A, H ₂ NCH ₂ CH ₂ OH, can be oxidised to f	orm an $lpha$ -amino acid.	
	(i)	Explain what is meant by an $\alpha\text{-amino}$ a	acid.	
			[1]	
	(ii)	Write an equation for the oxidation of N	MEA to form an $lpha$ -amino acid.	
		Use [O] to represent the oxidising ager	nt.	
			[1]	
(e)	Isor	somers F and G are hydroxyamines each with the molecular formula C ₄ H ₁₁ NO.		
	•	Isomer F can be dehydrated to form th	e cyclic compound NH	
	•	Isomer G has two chiral centres.		
	lder	ntify and draw the structural isomers F a	and G .	
		isomer F	isomer G	

[2]

[Total: 13]