| Che | below. | |---------|--| | | | | | structure A structure B | | (a) (i) | Describe, with the aid of suitable diagrams showing orbital overlap, the difference in bonding between structure A and structure B . | | | In your answer, you should use appropriate technical terms, spelled correctly. | [4] | (ii) The table below shows the enthalpy changes for the reactions of cyclohexene, C_6H_{10} , and benzene, C_6H_6 , with hydrogen. | reaction | enthalpy change/kJ mol ⁻¹ | |---|--------------------------------------| | $C_6H_{10} + H_2 \rightarrow C_6H_{12}$ | –119 | | $C_6H_6 + 3H_2 \rightarrow C_6H_{12}$ | -208 | Using this information, suggest and explain whether structure ${\bf A}$ or structure ${\bf B}$ is a better representation of benzene. |
 |
 |
 | | |------|------|------|--| | | | | | |
 |
 |
 | | | | | | | |
 |
 |
 | | | | | | | |
 |
 |
 | | | | | | | |
 |
 |
 | | | | | | | **(b)** Benzene compounds can undergo nucleophilic substitution reactions. Add curly arrows to the diagram below to show the two-step mechanism of $C_6H_5N_2^+$ with F^- . $$+ N = N$$ (c) Benzene can react with halogenoalkanes in the same way as with bromine, as shown in reaction 1 below. Write an equation to show the formation of the electrophile that reacts with benzene in reaction 1. - (d) The types of reaction in (b) and (c) can be used to synthesise compound D, as shown in the flowchart below. - (i) Complete the boxes below to suggest formulae for the reactants involved in the synthesis of compound D. Give structures for organic compounds. (ii) In a synthesis of compound **D** from 1,3-diaminobenzene shown in the flowchart, 1.73 g of compound **D** was prepared. These structures have been repeated below: The overall percentage yield of compound **D** was 40.0%. M_r of compound **D** = 346.0 Calculate the mass of 1,3-diaminobenzene needed for this synthesis. | (iii) | Compound D has been developed for possible use as a drug to treat heart conditions. When compound D , prepared in this synthesis, was given to patients, only 25% of the dose was effective in treating their heart conditions. | |-------|---| | | Explain why only 25% of the dose was effective. Suggest how the synthesis of compound ${\bf D}$ might be changed to make the dose more effective. | | | | | | | | | | | | | | | [3] | | | [Total: 18] | **2** 4-Aminophenol is an organic compound that can behave as an acid and a base. 4-aminophenol | | _ | | | | | |-----|-----------|----------------------------|-------|------------|---------| | (a) | State how | 4-aminopheno | l can | hahava as | a haca | | 141 | Otate HOW | - -anninoonicho | ı can | Deliave as | a base. | |
 | |------| | [1] | **(b)** 4-Aminophenol is produced by the reduction of 4-nitrophenol. Write an equation to show the production of 4-aminophenol from 4-nitrophenol. Use **[H]** to represent the reducing agent. [1] - (c) 4-Nitrophenol can be produced from 4-bromophenol. - Complete the mechanism for this reaction. - Use ⁺NO₂ as the electrophile. Include any intermediate and the products. - In the mechanism for this reaction, NO₂ substitutes for Br on the ring. (d) The flowchart below shows some reactions of 4-aminophenol. (i) Identity the reagent in reaction I. | [1] | |-----| |-----| (ii) Name the organic product of reaction II. | [1] |] | |-----|---| | | | (iii) Write the equation for reaction II. (iv) In the box on the flowchart, draw the structure of the organic compound formed by reaction III. [1] [1] (e) The Sandmeyer reaction can be used to replace a diazonium group, N_2^+ , with a halogen atom, X, on an aromatic ring. The reagent used for the reaction is a copper(I) halide, CuX. Compound **C**, shown below, can be synthesised using **only** 4-aminophenol and other standard laboratory reagents. The flowchart on the next page shows this synthesis. compound C (i) State a possible use for compound C.[1] - (ii) On the flowchart on the next page: - state the reagents and conditions used for reaction 1 - suggest the structure of compound B - suggest the reagent used for reaction 2 - state the conditions used for reaction 3. [5] | behave as bases. Explain why amines can behave The student reacted an excess of the salts the with: sulfuric acid, ethanoic acid. student reacted phenylamine with temperature below 10 °C. A diazonium ion with compound B . After | as ethylamine, $C_2H_5NH_2$, and phenylamine as bases. of $C_2H_5NH_2$ with two different acids. at would be formed when an excess of C_2H_2 . th a mixture of $NaNO_2(aq)$ and $HC1(aq)$ when the student then reconstruction, compound A was formed. | [1
₅ NH ₂ react | | | | | |---|--|--|--|--|--|--| | The student reacted an excess of Write the formulae of the salts the with: sulfuric acid, ethanoic acid. student reacted phenylamine wite temperature below 10 °C. A diazonium ion with compound B . Afte | of $C_2H_5NH_2$ with two different acids. at would be formed when an excess of C_2H th a mixture of $NaNO_2(aq)$ and $HCI(aq)$ where the student then resonant | [1 | | | | | | The student reacted an excess of Write the formulae of the salts the with: sulfuric acid, ethanoic acid. student reacted phenylamine wite temperature below 10 °C. A diazonium ion with compound B . Afte | of $C_2H_5NH_2$ with two different acids. at would be formed when an excess of C_2H th a mixture of $NaNO_2(aq)$ and $HCI(aq)$ when the student then represent the results of the student of st | [1 | | | | | | The student reacted an excess of Write the formulae of the salts the with: sulfuric acid, | of C ₂ H ₅ NH ₂ with two different acids. at would be formed when an excess of C ₂ H th a mixture of NaNO ₂ (aq) and HC <i>l</i> (aq) when the student then resonant in the reso | SNH ₂ reacts | | | | | | Write the formulae of the salts the with: sulfuric acid, ethanoic acid. student reacted phenylamine with temperature below 10 °C. A diazonium ion with compound B . Afte | at would be formed when an excess of C ₂ H th a mixture of NaNO ₂ (aq) and HC <i>l</i> (aq) when the student then represent the results of the student than results at least one | [2 | | | | | | with: sulfuric acid, ethanoic acid. student reacted phenylamine witemperature below 10 °C. A diazonium ion with compound B . Afte | th a mixture of NaNO ₂ (aq) and HC <i>l</i> (aq) when the student then restricted in the student of | [2 | | | | | | ethanoic acidstudent reacted phenylamine witemperature below 10°C. A diazonium ion with compound B . Afte | th a mixture of NaNO ₂ (aq) and HC <i>i</i> (aq) where the student then restricted in the student that restricted in the student that tha | [2 | | | | | | student reacted phenylamine with temperature below 10 °C. A diazonium ion with compound B . After N | th a mixture of NaNO ₂ (aq) and HC <i>l</i> (aq) who conium ion was formed. The student then r neutralisation, compound A was formed. | | | | | | | onium ion with compound B . Afte | neutralisation, compound A was formed. | nilst keeping
reacted the | | | | | | N. | | | | | | | | | 00011 | | | | | | | compound A | | | | | | | | (i) Draw the structures of the diazonium ion and compound B. | | | | | | | | Display the functional group in the diazonium ion. | | | | | | | | | | | | | | | | diazonium ion | compound B | [2] | | | | | | - | | nd B and | | | | | | ditions | | | | | | | | | diazonium ion te the conditions required for the te a possible use for compound A | Display the functional group in the diazonium ion. | | | | | | (iii) | The student added Na ₂ CO ₃ to a solution of compound A . | |------------|---| | | Draw the structure of the organic product and state the formulae of any other products from this reaction. | | | | | | | | | | | | | | | [2] | | (c) The | e student repeated the experiment in part (b) but allowed the temperature to rise above C. | | Und
gas | der these conditions, the diazonium ion in (b)(i) reacts with water to produce phenol. A with molar mass of 28.0 g mol ⁻¹ and one other product are also formed. | | Cor | nstruct an equation for this reaction. | | | | | | | | | | | | | | | [1] | | | [Total: 9] | - 4 Hydroxyamines are organic compounds containing hydroxyl and amino functional groups. - (a) Salbutamol is a hydoxyamine used in the treatment of asthma and bronchitis. Salbutamol is an example of a chiral drug. - (i) Draw a circle around the chiral carbon in the structure of salbutamol shown below. salbutamol [1] (ii) Suggest possible problems of making a chiral drug such as salbutamol and describe two ways that the pharmaceutical industry might overcome these problems. **(b)** Monoethanolamine, MEA, H₂NCH₂CH₂OH, is a hydroxyamine that is used in aqueous solution as a gas scrubber to remove acidic gases from emissions in incinerators. MEA is prepared industrially by reacting ammonia with epoxyethane. $$H_2C - CH_2$$ ## epoxyethane (i) Write an equation for the industrial preparation of MEA. [1] (ii) During the manufacture of MEA, a compound with molecular formula C₄H₁₁NO₂ is also formed. Draw the structure of the compound with molecular formula $C_4H_{11}NO_2$. [1] (c) The combustion of some polymers produces emissions containing toxic acidic gases such as HCl and H_2S . MEA can remove HCl and H_2S from the emissions. Give the formula of the organic salts formed when MEA removes: (i) HCl, [1] (ii) H₂S. | (d) | ME | A, H ₂ NCH ₂ CH ₂ OH, can be oxidised to f | orm an $lpha$ -amino acid. | | |-----|------|---|------------------------------------|--| | | (i) | Explain what is meant by an $\alpha\text{-amino}$ a | acid. | | | | | | | | | | | | | | | | | | [1] | | | | (ii) | Write an equation for the oxidation of N | MEA to form an $lpha$ -amino acid. | | | | | Use [O] to represent the oxidising ager | nt. | | | | | | [1] | | | (e) | Isor | somers F and G are hydroxyamines each with the molecular formula C ₄ H ₁₁ NO. | | | | | • | Isomer F can be dehydrated to form th | e cyclic compound NH | | | | • | Isomer G has two chiral centres. | | | | | lder | ntify and draw the structural isomers F a | and G . | isomer F | isomer G | | | | | | | | [2] [Total: 13]